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The complete blood count (CBC) provides a high-level assessment
of a patient’s immunologic state and guides the diagnosis and
treatment of almost all diseases. Hematology analyzers evaluate
CBCs by making high-dimensional single-cell measurements of
size and cytoplasmic and nuclear morphology in high through-
put, but only the final cell counts are commonly used for clinical
decisions. Here, we utilize the underlying single-cell measure-
ments from conventional clinical instruments to develop a math-
ematical model guided by cellular mechanisms that quantifies the
population dynamics of neutrophil, lymphocyte, and monocyte
characteristics. The dynamic model tracks the evolution of the
morphology of WBC subpopulations as a patient transitions from
a healthy to a diseased state. We show how healthy individuals
and hospitalized patients with similar WBC counts can be ro-
bustly classified based on their WBC population dynamics. We
combine the model with supervised learning techniques to risk-
stratify patients under evaluation for acute coronary syndrome.
In particular, the model can identify more than 70% of patients in
our study population with initially negative screening tests who
will be diagnosed with acute coronary syndrome in the subse-
quent 48 hours. More generally, our study shows how mechanis-
tic modeling of existing clinical data can help realize the vision of
precision medicine.

acute coronary syndrome | mathematical modeling | white blood cells |
disease prognosis | population dynamics

Circulating blood cells continuously interrogate almost all
tissues in high throughput, and their collective states of

maturation, activation, proliferation, and senescence reflect
current pathophysiologic conditions: healthy quiescence, acute
response to pathology, chronic compensation for disease, and
ultimately, decompensation. Routine complete blood counts
(CBCs) involve measurements of single-cell characteristics for
tens of thousands of blood cells and provide a high-level view of
these pathophysiologic states. Each routine CBC measures
high-dimensional single-cell information, but clinical decisions
are currently based on only a few derived statistics. The vast
potential of the complete set of CBC measurements has been
well-appreciated, with previous efforts attempting early de-
tection of infection by identifying immature granulocytes or
prognosis for some malignancies by counting the number of
WBCs with atypical characteristics (1–3). These efforts have
had limited impact but hint at the potential for enhanced
clinical decision support (4, 5).
Here, we develop mathematical models of the population

dynamics of neutrophils, lymphocytes, and monocytes using
these CBC measurements. To test the hypothesis that qualita-
tive aspects of WBC population dynamics are altered in dis-
ease, we first compare WBC population dynamics in healthy
individuals with those in patients with an acute illness requiring
treatment in a hospital. We ensure that overall WBC counts are
normal to investigate the effect of acute illness on WBC dy-
namics independent of its effects on absolute WBC count. We
then focus on a common and important acute illness, acute
coronary syndrome (ACS), one of the leading causes of death

worldwide. ACS is caused by insufficient oxygen supply (severe
ischemia) to the myocardium, resulting in either a myocardial
infarction (MI) or unstable angina (6–9). MI is diagnosed by
measuring cardiac troponin (cTn), a protein found in the car-
diac myocytes that leaks into the blood stream after myocyte
death. cTn appears in the blood only after a few hours or even
days after the onset of symptoms, thus complicating rapid in-
tervention for some patients (8). We hypothesize that the se-
vere ischemia and developing infarction trigger an immediate
and substantial inflammatory response that can be detected in
terms of its perturbations to WBC dynamics, while patients ex-
periencing unstable angina or other pathology not associated
with MI will show WBC dynamics that are perturbed in a dif-
ferent manner or not at all.

Model Derivation
We begin with a biological interpretation of the single-cell op-
tical scatter properties whose multivariate distribution is mea-
sured in a typical CBC (Fig. 1). These measurements generally
reflect single-cell size, cytoplasmic granularity, nuclear mor-
phology, and other similar characteristics. For instance, the
Abbott Cell-DYN Sapphire estimates cell size by measuring the
axial light loss (ALL) for each cell, cytoplasmic and nuclear
complexity by measuring intermediate angle scatter intensity
(IAS), and nuclear lobularity by measuring polarized side scatter
intensity (PSS) (10). These single-cell properties provide a great
deal of information, however nonspecific, about pathophysio-
logic states, because they tend to change in particular ways as
cells mature, become activated, proliferate, and senesce (4, 11).
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The size, nuclear morphology, and cytoplasmic complexity of
individual cells can be utilized as a crude indicator of cell age and
activation state, and the distribution of these characteristics can
be correlated with many disease processes. There are many basic
unanswered questions regarding the life cycle and response of
WBCs in vivo in general and during heterogeneous pathologic
conditions. We avoided making strong assumptions about the
rates of production, proliferation, or turnover by not including
explicit source terms (e.g., birth and death) in the model. To
minimize assumptions and the number of model parameters, we
lump these different functional processes into drift and diffusion
parameters for each cell population, with the drift quantifying
the average combined effects of proliferation, maturation, acti-
vation, and recycling on each individual cell’s measurements and
the diffusion quantifying the variation from one cell to the next
and in the same cell over time.
We model the evolution over time of the probability density (P)

of these attributes, decomposed into drift (μ) and diffusion (D)
processes for each cell population. The Fokker–Planck equation is
a partial differential equation that can be used to describe this sort
of temporal evolution of a probability density function (12):

∂Pi

∂t
=−∇ðPiμÞ+∇ðD∇PiÞ. [1]

The above equation tracks the evolution of the cellular charac-
teristics as they deviate from or fluctuate around a healthy state

(13). In Eq. 1, Pi is the probability density for the single-cell
measurements of the ith WBC subpopulation (i ∈ neutrophils,
lymphocytes, monocytes); μ represents the drift function or ve-
locity field, and D is the diffusion coefficient. Fig. 1 shows a
schematic of the modeling approach. These drift and diffusion
parameters are estimated for each patient CBC and provide a
personalized assessment of pathophysiologic state characterized
by 13 parameters: ALL and IAS drift and diffusion parameters
for neutrophils, lymphocytes, and monocytes and a PSS drift
parameter for neutrophils. The model is solved using an initial
condition provided by a normal CBC from the patient at an
earlier, healthy time point and a final condition reflecting the
integrated effects of healthy fluctuations and perturbations
caused by any disease.
Lymphocyte population dynamics are modeled in terms of

ALL and IAS. We describe the time-dependent evolution of the
probability distribution of lymphocyte ALL and IAS (PLYM) with
a drift–diffusion or Fokker–Planck equation:

∂PLYM

∂t
=−

∂
∂xALL

�
μALL,LPLYM

�
−

∂
∂xIAS

�
μIAS,LPLYM

�

+DALL,L
∂2PLYM

∂x2ALL
+DIAS,L

∂2PLYM

∂x2IAS
.

[2]

The drift terms (∂/∂xALL and ∂/∂xIAS) capture the changes in the
mean with respect to a morphological attribute, while the diffu-
sion terms (∂2/∂xALL2 and ∂2/∂xIAS2) track the changes in the
variance of the distribution. A change in the central tendency
or mean is generally hypothesized to be caused by a change in
the distribution of ages or activation states in the circulating
population. In Eq. 2, PLYM is the 2D probability density of the
lymphocyte population in the ALL–IAS plane, and DALL,L and
DIAS,L are the invariant diffusive coefficients with respect to the
ALL and IAS dimensions.
The growth rate of individual lymphocytes as a function of

lymphocyte age or size is unclear and difficult to measure. Pre-
vious investigators have found evidence that the growth rate of
lymphoblasts is proportional to volume up to a point and then
declines roughly linearly with increasing size (14). We represent
ALL dynamics in a qualitatively consistent way by modeling the
growth rate as a linearly increasing function of ALL up to the
median of the final ALL distribution, after which it decreases.
The growth rate at zero volume is zero and goes up to a maxi-
mum absolute value of αALL. The drift, μALL, as a function of
normalized ALL (Fig. S2) is

μALL =−αALL

8>>><
>>>:

xALL
MedianPend,ALL

, when  xALL <MedianPend,ALL

MedianPend,ALL

xALL
, when  xALL ≥MedianPend,ALL

.

[3]

MedianPend,IAS and MedianPend,ALL represent the median IAS
and ALL of the final probability density, respectively (target
distribution used for the fitting). αALL and αIAS are the fitted
patient-specific drift parameters. We hypothesize that the cyto-
plasmic complexity and granularity of cells generically reflect
cellular responses to activation or deactivation signals. Cellular
signal transduction responses are often nonlinear, and we, there-
fore, model the typical response rate as initially very slow in
terms of IAS and then increasing quickly after a signal before
stabilizing at a poised level. Michaelis–Menten kinetics provide a
standard mathematical description of this sort of sigmoidal
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Fig. 1. Overview of the modeling approach. A shows a schematic of the
analytic workflow, including blood sample collection, single-cell measure-
ments on an automated hematology analyzer, data analysis and mathe-
matical modeling, and patient classification. The IAS and ALL scatterplots for
a typical patient’s CBC are shown in a healthy state (B) and at the time of an
elevated troponin level (C). Probability distributions for the lymphocyte
population in healthy and acutely ill states are shown as surface and contour
plots (D). The contour plots show how the model captures the trajectory of
the distribution in terms of drift and diffusion as the blood cell populations
are perturbed by or respond to pathologic conditions.
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response, as shown in Eq. 4 and Fig. S2. The drift, μIAS, as a
function of normalized IAS is

μIAS =−αIAS

8>>>>>><
>>>>>>:

1− 2 

xIAS
MedianPend,IAS

1+
xIAS

MedianPend,IAS

,     when  xIAS <MedianPend,IAS

2 

xIAS
MedianPend,IAS

1+
xIAS

MedianPend,IAS

,     when  xIAS ≥MedianPend,IAS

[4]

The population dynamics of monocytes are modeled similarly:

∂PMON

∂t
=−

∂
∂xALL

�
μALL,MPMON

�
−

∂
∂xIAS

�
μIAS,MPMON

�

+DALL,M
∂2PMON

∂x2ALL
+DIAS,M

∂2PMON

∂x2IAS
.

[5]

PMON indicates the 2D probability distributions of ALL and
IAS for the monocyte subpopulation. The drift (15, 16) and
diffusion terms are similar to those in the lymphocyte model
(Eqs. 3 and 4).
Neutrophil nuclear morphology changes during maturation,

beginning with a simple mononuclear shape as a myeloblast
and acquiring indentations as a “band” form, and eventually,
multiple lobes as a fully mature polymorphonuclear leukocyte
(17). Previous investigators have shown that neutrophil nu-
clear morphology is altered in response to disease; in partic-
ular, the fraction of neutrophils with band vs. segmented
nuclear morphology has been shown to increase in states of
inflammation, such as neonatal sepsis (18). The lobularity of
the nucleus is reflected in the PSS measurement, and we,
therefore, include this measurement only in our model of
neutrophil population dynamics; we simplify this PSS model
to assume no diffusion. Based on this interpretation of PSS,
neutrophils with lower PSS are more likely to be immature. A
simple way to model the drift along this dimension is to pick a
threshold and track the fraction of neutrophils falling below
the threshold. We calculated the 2.5th percentiles of several
hundred normal CBCs and took the upper quartile of this
distribution of quantiles as a candidate threshold to distin-
guish lower nuclear lobularity (as seen in band neutrophils)
from higher lobularity (segmented neutrophils). The size of
the fraction of neutrophils with PSS that is below this
threshold (KPSS,2.5) is hypothesized to reflect the degree of
neutrophil immaturity, and a simple characterization of drift
is the change in the size of this fraction over time:

fPSS,2.5ðtÞ=
ZKPSS,2.5

0

PPSSðx, tÞdx. [6]

Modeling the drift of this fraction will capture the change in
immaturity. We also want to account for the background level of
immaturity on top of which these changes occur. For instance, an
increase of 1% in the immature fraction from 1 to 2% may
represent background fluctuations, while the same 1% fractional
increase from 10 to 11% signifies that an already significantly
perturbed state is even further perturbed. We nondimensionalize
the drift by scaling by the fraction at the second time point. We
found no persuasive biological rationale for adding the com-
plexity of a diffusive term along the PSS dimension and therefore
do not include it in our model. Because we are modeling a

probability distribution across two grid points, the net drift from
the first grid point must then equal the net drift into the second,
yielding the following drift term for PSS:

μPSS =−

8>>><
>>>:

αPSSxPSS
fPSS,final

, when  xPSS <KPSS,2.5

−
αPSSxPSS
fPSS,final

, when  xPSS ≥KPSS,2.5

. [7]

Thus, our full model of neutrophil population dynamics is the
following:

∂PNEU

∂t
=−

∂
∂xALL

�
μALL,NPNEU

�
−

∂
∂xIAS

�
μIAS,NPNEU

�

−
∂

∂xPSS

�
μPSS,NPNEU

�
+DALL,N

∂2PNEU

∂x2ALL
+DIAS,N

∂2PNEU

∂x2IAS
.

[8]

For a given set of parameters, Eqs. 2, 5 and 8 were solved nu-
merically for variables normalized by the raw optical intensities:
[ALL, IAS] = [0,1] × [0,1]. Initial conditions [PIC(t = 0, X) = P1]
were defined by the normalized measurements taken at a
healthy time point for that patient, final conditions (PFC =
P2) were defined by normalized measurements at the time
of patient presentation, and boundary conditions were de-
fined by zero probability outside the range of measured in-
tensity values [P(t, X ≤ 0) = 0, P(t, X ≥ 1) = 0]. Here, X represents
the optical measurements (X ∈ALL, IAS,PSS). SI Results has
more details.

Results
We first compare WBC population dynamics for healthy in-
dividuals with those for patients currently being treated for a
significant acute illness that warranted measurement of cTn
whether or not the test result was positive (abnormal). cTn is
measured for patients undergoing emergent treatment for
significant nonspecific chest discomfort (19) and often as well
for severe and acute symptoms attributed to respiratory, gas-
trointestinal, musculoskeletal, and other systems. We chose
cTn to focus on patients suffering from rapidly progressing
disease processes as opposed to those with chronic diseases,
which have effects on WBC dynamics that may have a longer
timescale complicated by compensatory adaptation. We
expected that the dynamics for the healthy individuals would
typically correspond to fluctuations around a healthy steady
state, while the dynamics for the acutely ill patients would
reflect a transition to a new pathologic quasisteady state, in-
tegrating the effects of a rapidly acting disease process. To
compare the magnitude of the baseline healthy fluctuations
with the acute disease changes, we scale the drift and diffusion
parameters by an arbitrary time constant. To focus on the
effects of WBC dynamics instead of WBC count, we restricted
our analysis to CBCs with normal WBC counts. Each of the
13 parameters obtained for patients belonging to the two
cohorts, healthy (“control”) and acutely ill (“study”), were
compared using the Kruskal–Wallis nonparametric test. Fig.
2 reveals the statistical significance of the difference be-
tween each individual model parameter for the two groups.
The patients in the two groups were thus indistinguishable
based on the WBC count, but Fig. 2 shows that 7 of 13 model
parameters differ between the two groups with statistical
significance.
The differences in median parameters for the two groups show

that acute pathologic processes significantly perturb WBC pop-
ulation dynamics and that these perturbations are detectable,
even with this coarse model of WBC population dynamics, and
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are also sufficiently independent of changes in absolute WBC
counts. Parameters characterizing the ALL dynamics (or size)
are significantly different for all three WBC subtypes, with an
increasing distribution width for neutrophils in acute illness and
a decreasing median for both lymphocytes and monocytes. This
pattern would be consistent with a neutrophil-predominant
response to acute processes leading to heterogeneity in the
neutrophil size distribution compared with a relative reduction
in the size distributions of both lymphocytes and monocytes.
There is also an increase in the granularity of the neutrophil
populations for the acutely ill cohort. Motivated by cellular
mechanisms, our models include nonuniform drift fields. For
healthy individuals, we expect the dynamics to fluctuate around
an average state with no net bias, consistent with the small
median drift parameter values for the healthy population as
shown in Fig. 2.
We next focus on WBC population dynamics in ACS. In

some cases of ACS, the myocardial ischemia progresses to the
point of myocardial cell death, necrosis, and tissue infarction
(heart attack). We hypothesize that the earliest stages of
myocardial ischemia trigger an inflammatory response altering
WBC population dynamics and that these altered dynamics are
detectable well before the ischemia has progressed to the point
of significant myocardial cell death. We, therefore, expect that
WBC dynamics will be altered before an elevated level of cTn
has leaked into the bloodstream (20, 21), and it might be pos-
sible to detect these altered dynamics with our model. ACS
patients often have initially normal (low) cTn levels when they
first present to the emergency room with symptoms and must
wait hours before cTn becomes elevated, delaying the timing of
necessary treatment (22, 23). We modeled WBC population
dynamics for patients who presented with a normal cTn and
compared parameters for those whose cTn remained normal
(low) with those whose cTn became elevated (high). Absolute
WBC count correlates with risk of MI (24), and to focus on
differences in WBC dynamics that are independent of the
number of WBCs, we matched patients in each group by ab-
solute WBC count (counts match to within 0.5 × 103 cells per 1
μL). We compared distributions of each model parameter in
the two groups. Fig. 3 shows that 6 of 13 parameters are sig-
nificantly different between these two groups according to a
Kruskal–Wallis test.
The differences in median parameters for the two groups show

that changes in WBC population dynamics preceded elevation in
cTn for some patients in this cohort and that these changes were
detectable even with this coarse model of WBC population

dynamics and also even when controlling for absolute WBC
count. These groups were also indistinguishable based on the
WBC differential (Fig. S1). The parameters distinguishing the
two groups with statistical significance using Kruskal–Wallis test are
lymphocyteDALL and αALL, neutrophil αALL and αPSS, and monocyte
αIAS andDIAS. The medianDALL is elevated when cTn is elevated, as
was seen for the acutely ill group in Fig. 2, but the difference in
neutrophil DALL in this comparison is not statistically signifi-
cant, perhaps because the group with normal cTn is also likely
suffering from some sort of acute illness warranting the cTn
testing. These other presumably non-ACS conditions may have
nonspecifically altered neutrophil dynamics. Earlier identifica-
tion of patients whose cTn is likely to become elevated in the
near term would enable earlier intervention in ACS and pos-
sibly improve outcomes for at least some of these patients
suffering from one of the most common causes of sudden death
in the world. To begin to assess the diagnostic utility of this
approach for assisting in the risk stratification of patients being
evaluated for ACS, we developed a cross-validated ensemble
boosted tree model (AdaBoost) to classify patients at the time
of a normal cTn using a subset of the model parameters chosen
by feature selection (DALL,L, αALL,L, αPSS,N, αIAS,M) and the
data from the patients shown in Fig. 3 (25). We then identified
an independent set of patients with initially normal cTn levels
and assessed the accuracy of the same classifier when predicting
which of those patients would have an elevated cTn level in the
next 48 h. Fig. 4 shows the classifier performance for both the
training and validation sets using a receiver operating charac-
teristic (ROC) curve (26) and a confusion matrix. ROC curves
are commonly used in medical diagnosis to assess classifier
accuracy. A classifier based on WBC population dynamics can
thus identify more than 70% of patients who will have an ele-
vated cTn in the next 48 h. Sensitivity is more important than
specificity in a screening test, and as shown in Fig. 4, it is
possible to choose a decision threshold for this classifier such
that, for every four actual MI patients identified who can re-
ceive more rapid and appropriate intervention, only about one
patient not having an actual MI would begin unnecessary early
treatment, corresponding to a sensitivity of 40% and a speci-
ficity of 90% when negative and positive cases have equal
prevalence.

Discussion
We have developed a mathematical model of the population
dynamics of neutrophils, lymphocytes, and monocytes that
coarsely quantifies the lumped effects of cellular production,
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Fig. 2. Healthy and acutely ill patients with normal
WBC counts can be distinguished on the basis of WBC
population dynamics. A–E compare individual model
parameters for healthy individuals (control) and pa-
tients who are acutely ill (study). All WBC counts for
all subjects were normal, and the control and study
groups were, therefore, indistinguishable based on
only WBC count. Each of the 13 model parameters is
compared separately between the two groups with
a Kruskal–Wallis test. F displays log-transformed
P values [−log(p)] for each model parameter (sub-
script L is for lymphocytes, M is for monocytes, and
N is for neutrophils). Points above the dashed line
[−log(0.05)] are significant, and 7 of 13 model pa-
rameters are different with statistical significance.
Each cohort for each parameter and lineage contains
results for all CBCs with good parameter fits (n >
70 in all cases). Methods and SI Results have more
details. LYM, lymphocytes; MON, monocytes; NEU,
neutrophils; NS, not significant. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001.

Chaudhury et al. PNAS | November 14, 2017 | vol. 114 | no. 46 | 12347

SY
ST

EM
S
BI
O
LO

G
Y

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
10

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1709228114/-/DCSupplemental/pnas.201709228SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1709228114/-/DCSupplemental/pnas.201709228SI.pdf?targetid=nameddest=STXT


www.manaraa.com

maturation, activation, and senescence. We found that patients
with acute disease processes have significantly different WBC
dynamics from those who are healthy, even after controlling for
WBC count. We further showed that the model may be helpful
in identifying patients being evaluated for MI who are most likely
to be confirmed as having an MI in the near future and thus
would likely benefit from immediate aggressive intervention.
This model generates hypotheses that require follow-up in-

vestigation about the underlying pathophysiological perturbations
to WBC population dynamics caused by acute disease in general
and MI in particular. For instance, the median and variance of the
lymphocyte DALL and αALL parameters in Fig. 3 are higher for
patients who progress to MI, suggesting that the median and
variance of the distribution of the volumes of circulating lym-
phocytes both increase for patients developing MI. Lymphocytes
are hyperproliferative cells that continue to proliferate on acti-
vation, and this widening of the size distribution could be attrib-
uted to the presence of greater numbers of naïve cells, smaller
activated cells entering the circulation, or larger activated cells
undergoing additional proliferation (27–29). The ALL measure-
ment generally reflects cell size, and the significant difference in
αALL shown in Fig. 3A suggests enrichment of smaller neutrophils
in advance of a clinical diagnosis of MI compared with patients
who remain stable. Smaller neutrophils have been shown to be
older (30), and this enrichment may reflect a consumption of
younger neutrophils or a state of activation, which is associated
with a reduction in cell size (31, 32). The significance of αPSS for
neutrophils is consistent with an increased number of immature or
band neutrophils in the circulation, as has been shown before (20,
33). The increased monocyte αIAS for patients progressing to MI
(and the statistically significant αALL for study vs. control groups)
suggests an increase in the heterogeneity of the population, which
could be attributed to accelerated proliferation or maturation and
increased production of new cells (34). These interesting mecha-
nistic hypotheses require dedicated follow-up study, and our
model enables the identification and analysis of informative sets
of patients.
Patients in our study were evaluated using traditional cTn

measurements, and it is possible that some patients with normal
cTn who are accurately identified as high risk for cTn elevation
would have tested positive using a high-sensitivity cTn assay.
Follow-up analysis using one of these assays is warranted. Because
we focus on patients who are either stable or being treated for a
significant acute illness, we do not explore the timescale for WBC
population dynamics. Future study of the timescale for changes in
WBC dynamics, particularly in chronic illness, may also be

informative and useful. We currently use a normal CBC from each
patient as the initial condition, and future work will explore the
possibility of using a normal template or ensemble of normal
starting points in cases where a normal CBC for the patient is
not available.
We have focused on ACS, but we expect that many other

diseases are associated with altered WBC population dynamics
and that study with this sort of dynamic model will generate
insight into human physiology overall, providing potentially
useful biomarkers. More generally, our study shows how semi-
mechanistic modeling of the high-throughput datasets already
routinely collected in hospital clinical laboratories can help re-
alize the vision of personalized medicine.
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Fig. 3. WBC population dynamics can distinguish
patients with stably low troponin from those whose
low troponin is likely to become elevated. A–E com-
pare individual model parameters for patients with
stably low cTn (low) and patients whose initially
normal cTn becomes elevated (high). Low and high
subjects were matched to have WBC counts within
0.5 × 103 cells per 1 μL. Low and high groups were,
therefore, indistinguishable based on only WBC
count. Each of the 13 model parameters is compared
separately between the two groups with a Kruskal–
Wallis test. F displays log-transformed P values [−log(p)]
for each model parameter (subscript L is for lympho-
cytes, M is for monocytes, and N is for neutrophils).
Points above the dashed line [−log(0.05)] are significant,
and 6 of 13 model parameters are different with sta-
tistical significance. Each cohort for each parameter and
lineage contains results for all CBCs with good param-
eter fits (n > 110 in all cases). Methods and SI Results
have more details. LYM, lymphocytes; MON, mono-
cytes; NEU, neutrophils; NS, not significant. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 4. Diagnostic accuracy of model parameters for predicting which pa-
tients with normal cTn will have an elevated cTn in the subsequent 48 h. ROC
curves were generated for a decision tree classifier using parameters from
the model of WBC population dynamics. A shows the ROC curve for the
training dataset used to develop the classification tree with fivefold cross-
validation, and a confusion matrix (B) shows the performance of one de-
cision threshold on the training set. This same classifier was applied to an
independent set of patients (nlow = 60, nhigh = 60), with ROC curve (C) and
confusion matrix (D) showing similar diagnostic accuracy and area under the
curve (AUC) as expected for a cross-validated classifier.
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Methods
Human Materials. All patient data were accessed under a research protocol
with waiver of consent approved by the Partners Healthcare Institutional
Review Board.

Patient Blood Sample Collection and Measurement. All CBC measurements
were made on an Abbott Cell-DYN Sapphire automated hematology analyzer
(Abbott Diagnostics). The analyzer makes several optical measurements on
each cell, including ALL representing cell size, IAS representing cellular com-
plexity, PSS representing nuclear lobularity, depolarized side scatter (DSS)
representing cytoplasmic granularity, and cellular DNA fluorescence primar-
ily used to detect nucleated RBCs (10). We expected that cellular size, cyto-
plasmic complexity, and nuclear lobularity would provide the strongest and
most useful correlates of cellular maturation and activation and therefore
focused our analysis on the ALL, IAS, and PSS measurements. Since lympho-
cytes and monocytes are mononuclear, the relevance of nuclear lobularity is
limited for these cells, and hence, the PSS measurement is studied only
for neutrophils.

Control and Study Cohorts. The healthy cohort (control) is obtained from serial
measurements of patients who had not had an abnormal CBC index in the
prior 2 y and who had not visited the hospital within the prior 250 d to select
for patients whose only medical visits were likely for annual physical ex-
amination. We excluded parameters on a perWBC-type basis when minimum
goodness-of-fit criteria were not satisfied (SI Results). Final analysis for the
control cohort included 102 CBC pairs for the neutrophil model, 113 for the
lymphocyte model, and 74 for the monocyte model. The study group in-
cluded patients who had a cardiac troponin T (cTnT) test (Roche Diagnostics)
ordered at Massachusetts General Hospital between June of 2012 and July
of 2015, a CBC at the same time as the cTnT, and also, a normal CBC mea-
surement at least 60 d before the cTnT measurement. CBC pairs were in-
cluded for modeling of each WBC subtype as above when goodness-of-fit
criteria were achieved, yielding 139 CBC pairs for the neutrophil model,
173 for the lymphocyte model, and 97 for the monocyte model.

“Low” and “High” Cohorts. Within the study group described above, we
identified a low group containing 153 patients who had a normal cTnT
measurement (≤0.03 ng/mL) followed by another normal cTnT. These patients
were treated at Massachusetts General Hospital and had cTnT measurements
between June of 2012, and July of 2015. We also identified a high group
containing 201 patients with an initially normal cTnT that became elevated
within the subsequent 48 h. We treated an elevated cTnT (>0.09 ng/mL) as
diagnostic for an MI (8). Patients with MI often have elevations in their WBC
count (24, 35), and we therefore controlled for WBC count, ensuring that each
low–high pair differed by less than 0.5 × 103/μL and that each WBC count
was <17 × 103/μL. These two groups were thus indistinguishable based onWBC
count, and Fig. S1 shows that they are also indistinguishable based on WBC
differential counts.

“Validation” Cohort. A validation set of 120 patients was considered to test
the accuracy of a classifier built from the low and high model parameters.
Patients who had cTnT measurements at Massachusetts General Hospital
after August of 2015 and normal CBCs at least 60 d prior were considered in
this cohort.
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